non-abelian, supersoluble, monomial
Aliases: C33⋊2D9, C34.2S3, C32⋊C9⋊7S3, C33⋊C9⋊3C2, C32.7(C9⋊S3), C33.20(C3⋊S3), C3.6(C33⋊S3), C3.3(C32⋊2D9), C32.20(He3⋊C2), SmallGroup(486,52)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C33⋊C9 — C33⋊2D9 |
C33⋊C9 — C33⋊2D9 |
Generators and relations for C33⋊2D9
G = < a,b,c,d,e | a3=b3=c3=d9=e2=1, ab=ba, ac=ca, dad-1=ab-1c, eae=a-1bc-1, ebe=bc=cb, dbd-1=bc-1, cd=dc, ece=c-1, ede=d-1 >
Subgroups: 1456 in 144 conjugacy classes, 17 normal (8 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C32, C32, D9, C3×S3, C3⋊S3, C3×C9, C33, C33, C33, C9⋊S3, C3×C3⋊S3, C33⋊C2, C32⋊C9, C34, C32⋊D9, C3×C33⋊C2, C33⋊C9, C33⋊2D9
Quotients: C1, C2, S3, D9, C3⋊S3, C9⋊S3, He3⋊C2, C32⋊2D9, C33⋊S3, C33⋊2D9
Character table of C33⋊2D9
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 3L | 3M | 3N | 3O | 3P | 3Q | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | |
size | 1 | 81 | 2 | 2 | 2 | 2 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 81 | 81 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | 2 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ5 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ7 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ8 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ95+ζ94 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ9 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | 0 | 0 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ10 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | 0 | 0 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ11 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | 0 | 0 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ12 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ13 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ98+ζ9 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ14 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ97+ζ92 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ15 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ16 | 3 | -1 | 3 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3+3√-3/2 | 0 | 0 | -3-3√-3/2 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ17 | 3 | -1 | 3 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3-3√-3/2 | 0 | 0 | -3+3√-3/2 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ18 | 3 | 1 | 3 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3+3√-3/2 | 0 | 0 | -3-3√-3/2 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ19 | 3 | 1 | 3 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3-3√-3/2 | 0 | 0 | -3+3√-3/2 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ20 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | -3 | 3 | -3 | 0 | 0 | 3 | -3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ21 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 3 | 0 | 3 | -3 | -3 | 0 | 3 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ22 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | -3 | 0 | 3 | 3 | -3 | 0 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ23 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | -3 | -3 | 0 | 3 | -3 | 0 | 3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ24 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 3 | -3 | 0 | 3 | -3 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ25 | 6 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | 3 | -3 | 0 | 3 | 0 | 3 | -3 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ26 | 6 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | 0 | 3 | -3 | 0 | -3 | 0 | 3 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ27 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 3 | 3 | -3 | 0 | 3 | -3 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ28 | 6 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | -3 | 0 | 3 | -3 | 3 | -3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊S3 |
ρ29 | 6 | 0 | 6 | -3 | -3 | -3 | -3-3√-3 | -3+3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3-3√-3/2 | 0 | 0 | 3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2D9 |
ρ30 | 6 | 0 | 6 | -3 | -3 | -3 | -3+3√-3 | -3-3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3+3√-3/2 | 0 | 0 | 3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2D9 |
(1 7 4)(2 12 22)(3 13 23)(5 15 25)(6 16 26)(8 18 19)(9 10 20)(11 17 14)(21 27 24)
(1 14 27)(2 19 15)(4 17 21)(5 22 18)(7 11 24)(8 25 12)
(1 27 14)(2 19 15)(3 20 16)(4 21 17)(5 22 18)(6 23 10)(7 24 11)(8 25 12)(9 26 13)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
(1 9)(2 8)(3 7)(4 6)(10 21)(11 20)(12 19)(13 27)(14 26)(15 25)(16 24)(17 23)(18 22)
G:=sub<Sym(27)| (1,7,4)(2,12,22)(3,13,23)(5,15,25)(6,16,26)(8,18,19)(9,10,20)(11,17,14)(21,27,24), (1,14,27)(2,19,15)(4,17,21)(5,22,18)(7,11,24)(8,25,12), (1,27,14)(2,19,15)(3,20,16)(4,21,17)(5,22,18)(6,23,10)(7,24,11)(8,25,12)(9,26,13), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (1,9)(2,8)(3,7)(4,6)(10,21)(11,20)(12,19)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)>;
G:=Group( (1,7,4)(2,12,22)(3,13,23)(5,15,25)(6,16,26)(8,18,19)(9,10,20)(11,17,14)(21,27,24), (1,14,27)(2,19,15)(4,17,21)(5,22,18)(7,11,24)(8,25,12), (1,27,14)(2,19,15)(3,20,16)(4,21,17)(5,22,18)(6,23,10)(7,24,11)(8,25,12)(9,26,13), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (1,9)(2,8)(3,7)(4,6)(10,21)(11,20)(12,19)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22) );
G=PermutationGroup([[(1,7,4),(2,12,22),(3,13,23),(5,15,25),(6,16,26),(8,18,19),(9,10,20),(11,17,14),(21,27,24)], [(1,14,27),(2,19,15),(4,17,21),(5,22,18),(7,11,24),(8,25,12)], [(1,27,14),(2,19,15),(3,20,16),(4,21,17),(5,22,18),(6,23,10),(7,24,11),(8,25,12),(9,26,13)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)], [(1,9),(2,8),(3,7),(4,6),(10,21),(11,20),(12,19),(13,27),(14,26),(15,25),(16,24),(17,23),(18,22)]])
G:=TransitiveGroup(27,193);
Matrix representation of C33⋊2D9 ►in GL8(𝔽19)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 5 | 0 | 1 | 0 | 0 |
0 | 0 | 12 | 2 | 18 | 18 | 0 | 0 |
0 | 0 | 14 | 17 | 0 | 0 | 0 | 1 |
0 | 0 | 7 | 14 | 0 | 0 | 18 | 18 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 5 | 1 | 0 | 0 | 0 |
0 | 0 | 2 | 5 | 0 | 1 | 0 | 0 |
0 | 0 | 14 | 17 | 0 | 0 | 0 | 1 |
0 | 0 | 7 | 14 | 0 | 0 | 18 | 18 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 17 | 0 | 1 | 0 | 0 |
0 | 0 | 17 | 14 | 18 | 18 | 0 | 0 |
0 | 0 | 12 | 5 | 0 | 0 | 0 | 1 |
0 | 0 | 5 | 2 | 0 | 0 | 18 | 18 |
2 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 1 | 0 | 0 |
0 | 0 | 10 | 16 | 17 | 18 | 0 | 0 |
0 | 0 | 5 | 4 | 5 | 17 | 1 | 0 |
0 | 0 | 5 | 4 | 5 | 17 | 0 | 1 |
0 | 0 | 16 | 9 | 17 | 5 | 0 | 0 |
0 | 0 | 15 | 10 | 17 | 5 | 0 | 0 |
14 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 1 | 0 | 0 |
0 | 0 | 9 | 3 | 1 | 2 | 0 | 0 |
0 | 0 | 3 | 10 | 2 | 14 | 0 | 0 |
0 | 0 | 4 | 10 | 2 | 14 | 0 | 0 |
0 | 0 | 14 | 15 | 14 | 2 | 18 | 0 |
0 | 0 | 2 | 18 | 14 | 2 | 1 | 1 |
G:=sub<GL(8,GF(19))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,2,12,14,7,0,0,18,18,5,2,17,14,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,2,2,14,7,0,0,18,18,5,5,17,14,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,18,18,7,17,12,5,0,0,1,0,17,14,5,2,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18],[2,14,0,0,0,0,0,0,5,7,0,0,0,0,0,0,0,0,0,10,5,5,16,15,0,0,0,16,4,4,9,10,0,0,18,17,5,5,17,17,0,0,1,18,17,17,5,5,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[14,2,0,0,0,0,0,0,7,5,0,0,0,0,0,0,0,0,0,9,3,4,14,2,0,0,0,3,10,10,15,18,0,0,18,1,2,2,14,14,0,0,1,2,14,14,2,2,0,0,0,0,0,0,18,1,0,0,0,0,0,0,0,1] >;
C33⋊2D9 in GAP, Magma, Sage, TeX
C_3^3\rtimes_2D_9
% in TeX
G:=Group("C3^3:2D9");
// GroupNames label
G:=SmallGroup(486,52);
// by ID
G=gap.SmallGroup(486,52);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,265,223,218,548,867,11344,3250,11669]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^9=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^-1*c,e*a*e=a^-1*b*c^-1,e*b*e=b*c=c*b,d*b*d^-1=b*c^-1,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations
Export